

Available online at www.sciencedirect.com

Preparation of Fe-ZSM-5 with enhanced activity and stability for SCR of NO_x

K. Krishna, M. Makkee *

Reactor & Catalysis Engineering, DelftChemTech, Delft University of Technology, Julianalaan 136, NL 2628 BL Delft, The Netherlands

Available online 23 March 2006

Abstract

Fe-ZSM-5 catalysts are prepared by 320 and 700 °C FeCl₃ sublimation into H-ZSM-5 and are characterised by XRD, H₂-TPR, NH₃-TPD, ²⁷Al MAS NMR, and NO adsorption by DRIFT. Selective catalytic reduction of NO with NH₃ and *i*-C₄H₁₀ and NO oxidation to NO₂ have been studied. Fe-ZSM-5 prepared by 700 °C FeCl₃ sublimation is more active compared with Fe-ZSM-5 prepared by 320 °C FeCl₃ sublimation. NO adsorption study by DRIFT shows that FeCl₃ sublimation temperature effects the relative distribution of different iron species in Fe-ZSM-5. High temperature FeCl₃ sublimation leads to isolated and hydroxylated iron species (–Fe(OH)₂) attached to the ion-exchange positions of ZSM-5. Isolated iron species are intrinsically more active in SCR of NO with NH₃ and *i*-C₄H₁₀, and NO oxidation to NO₂. All Fe-ZSM-5 catalysts deactivate under simulated exhaust gases at 600 °C. Deactivation is due to extensive detachment of iron species from the ion-exchange positions followed by dealumination of zeolite.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Selective catalytic reduction (SCR); NO_x; Fe-ZSM-5 catalysts

1. Introduction

Among the different pollutants, NO_x (NO + NO₂), N_2O_x , CO₂, and particulate matter (soot) contribute to majority of problems starting from local pollution causing health effects to global warming. Selective catalytic reduction (SCR) of NO_x with NH₃ or urea is widely used technology for cleaning exhaust gases of stationary sources [1]. Zeolite based catalysts are found to efficiently convert NO_x to N₂ using NH₃ or hydrocarbon (HC) as a reductant and are considered as suitable materials for exhaust-gas cleaning for mobile applications [2]. Among the zeolite-based catalysts, Fe-ZSM-5 is one of the most studied and very active catalytic system for SCR of NO_x with NH₃ and HC [3-7]. Besides SCR, Fe-ZSM-5 is also extensively investigated in N₂O decomposition and selective HC oxidations [8–10]. Fe-ZSM-5 catalysts prepared by FeCl₃ sublimation into H-ZSM-5, developed by Sachtler's group [3], is found to have high catalytic activities in SCR of NO_x with NH₃ and HCs [5]. FeCl₃ sublimation is also very effective method for high levels of iron ion exchange into zeolite. The over-exchange Fe-ZSM-5 catalysts prepared by FeCl₃ sublimation are reported to be very stable even in the presence of H₂O [3].

A variety of Fe species formed/deposited inside the zeolite pore network are proposed as active centers to explain the observed high activities on Fe-zeolite catalysts in SCR, N₂O decomposition, and selective HC oxidations. Different starting materials, catalyst preparation methodologies, and characterisation techniques have led to the proposal of a large number of active species structure in Fe-ZSM-5. Among others the active sites postulated for catalysing different reactions are [HO-Fe-O-Fe-HO] $^{2+}$, α -oxygen, Fe₄O₄, isolated Fe $^{3+}$, isolated Fe $^{2+}$, – Fe-O-Al- clusters, and -Fe(OH)₂ [5,9-15]. A systematic study of Fe-ZSM-5 preparation from FeCl₃ sublimation by Marturano et al. [16] and by Battiston et al. [11] has shown that every step during catalyst preparation influences the active species or active species distribution in Fe-ZSM-5. An over-exchange Fe-ZSM-5 may contain many of such active sites to different extents [17]. The intrinsic activity of different iron species in Fe-ZSM-5 is expected to be different due to their structure, location, electronic and steric environment around the active sites.

^{*} Corresponding author. Tel.: +31 15 278 1391; fax: +31 15 278 5006. E-mail address: m.makkee@tnw.tudelft.nl (M. Makkee).

Based on DRIFT studies of NO adsorbed Fe-ZSM-5 it is suggested that FeCl₃ sublimation temperature influences the population and the nature of the iron species in zeolite pore network [18]. In the DRIFT studies all iron species, due to the catalyst pretreatment used, have not been fully elucidated [18–20]. In the present investigation further characterisation of iron species in Fe-ZSM-5 catalysts prepared by 320 and 700 °C FeCl₃ sublimation and its activity in various SCR reactions, stability, and causes for deactivation are presented. A correlation of the NO_x conversion to the observed active species in Fe-ZSM-5 will be made.

2. Experimental

2.1. Fe-ZSM-5 preparation

Na-ZSM-5 (Si/Al = 11, TOSOH), crystallite size $\sim 2~\mu m$, is converted to H-ZSM-5, by aqueous NH₄⁺ exchange followed by calcination at 600 °C for 5 h. Fe-ZSM-5 is prepared by modifying the sublimation method developed in Sachtler's group [3]. The set-up described in Ref. [18] is used for FeCl₃ sublimation. In the modified sublimation method, anhydrous FeCl₃ (99.99%, Aldrich) is dropped over activated H-ZSM-5 at different sublimation temperatures (320 or 700 °C). All FeCl₂-ZSM-5 samples are washed with deionised water until free of chloride ions (AgNO₃ test), followed by drying at 100 °C overnight, and subsequently calcined at 600 °C for 5 h in air. The physico-chemical properties of some catalysts are listed in Table 1.

2.2. Catalytic activity

Fe-ZSM-5 catalysts (0.1 g) are screened for SCR of NO_x with NH₃ between 300 and 550 °C. SCR of NO_x is carried out with synthetic exhaust-gas mixture contained 1000 ppm NO, 1000 ppm NH₃, 10 vol% O_2 , 9 vol% H_2O , and balance N_2 . High space velocities (GHSV) of 750,000 h⁻¹ have been applied. The catalyst ageing is studied at 600 °C for 100 h time on stream with exhaust gas containing 9 vol% H₂O at a GHSV of 1.400,000 h⁻¹. During ageing after every 15 h of time on stream (TOS) at 600 °C the NO_x conversion at low temperatures are measured. SCR of NO with iso-butane (i-C₄H₁₀) is carried out with feed gas containing 1000 ppm NO, 1000 ppm i-C₄H₁₀, 10 vol% O_2 , and N_2 as balance at a GHSV of 50,000 h⁻¹. NO oxidation to NO2 is studied under similar conditions, in the absence of i-C₄H₁₀. NO_x and N₂O are monitored with a chemiluminescence detector and gas chromatography, respectively. The formation of N₂O over the catalysts is negligible under all reaction conditions.

Table 1 Preparation conditions and IE percentage of Fe-ZSM-5 [2]

Catalyst	$FeCl_3$ sublimation temperature (°C)	IE (%)
Fe-ZSM-5-320	350	69
Fe-ZSM-5-700	700	51

2.3. Characterisation

NH₃-TPD and H₂-TPR are carried out in a Micromeritrics pulse chemisorb (2900) TPD-TPR instrument. For NH₃-TPD 20 mg of fresh and aged samples are activated at 600 °C for 1 h in He and cooled to 200 °C. NH₃ is adsorbed at 200 °C for 0.5 h and flushed with He for 0.5 h to remove any physically adsorbed NH₃. Desorption is carried at a heating rate of 10 °C min⁻¹ till 600 °C. For H₂-TPR 20 mg of fresh and used samples are activated at 600 °C for 1 h in air flow and cooled to room temperature. TPR is carried out in 5 vol% H₂ in Ar with a heating rate of 10 °C min⁻¹ till 900 °C and maintained for prolonged times at 900 °C.

Nicolet Magna IR 860 spectrometer equipped with liquid nitrogen cooled MCT detector is used for diffuse reflectance infrared Fourier transform spectroscopy (DRIFT) study. A spectratech DRIFT high temperature cell, equipped with CaF_2 windows, is filled with the powdered catalyst. The catalyst samples are activated at 450 °C for 1 h in 10 vol% O_2 or He or 10 vol% H_2 , and cooled to 50 °C. The activated zeolite IR spectra are recorded and used as background for collecting NO adsorption spectra at 50 °C. Sixty four scans are collected with 4 cm⁻¹ spectral resolution.

²⁷Al MAS NMR experiments are performed at 9.4 T on a Varian VXR-400 S spectrometer operating at 104 MHz with pulse width of 1 ms. The chemical shifts are reported with respect to Al(NO₃)₃ as external standard. Around 1600 scans are collected (similar but not identical for all samples).

The materials are also characterised by XRD (Philips X-ray diffractometer, PW 1840) with Ni-filtered Cu K α radiation ($\lambda = 1.541 \text{ Å}$).

3. Results and discussion

3.1. Characterisation

3.1.1. H_2 -TPR

Fig. 1 shows $\rm H_2$ -TPR profiles of Fe-ZSM-5 catalysts. The Fe³⁺ species in Fe-ZSM-5-700, prepared by 700 °C FeCl₃ sublimation, are reduced at relatively low temperatures compared with Fe-ZSM-5-320, prepared by 320 °C FeCl₃ sublimation. The reduction of Fe³⁺ to Fe²⁺ at zeolite ion-

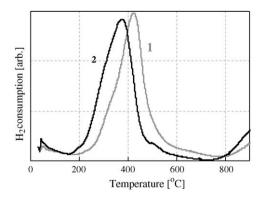


Fig. 1. H_2 -TPR profiles of Fe-ZSM-5-320 (1) and Fe-ZSM-5-700 (2) catalysts prepared by 320 and 700 °C FeCl₃ sublimation, respectively.

exchange positions is observed around 390 and 410 °C for 700 and 320 °C FeCl₃ sublimed catalysts, respectively. If extensive FeO_x phases have been present, than they generally show reduction peaks around 540 °C. Above 800 °C FeO_x nanoparticles/Fe²⁺ at ion-exchange positions can be reduced [18,21]. Both the Fe-ZSM-5 catalysts did not show H₂ consumption due to significant amount of FeO_x species. This is further supported by XRD spectra (not shown) in which the presence of FeO_x phases in Fe-ZSM-5 have not been observed. The absence of FeO_x phases is due to the low Fe³⁺ exchange levels and to some extent to the modified Fe-ZSM-5 preparation method. The facile reduction of Fe³⁺ species in Fe-ZSM-5-700 compared with Fe-ZSM-5-320 suggests the different nature of some of the iron species in the former catalyst.

3.1.2. ²⁷Al MAS NMR

High temperature (700 °C) FeCl₃ sublimation generates aggressive condition (high concentration of gas-phase HCl), and apart from ion exchange, H-ZSM-5 is expected to dealuminate leading to additional extra-framework alumina. FeCl₃ or FeO_x can also react with extra-framework alumina during high temperature catalyst preparation to form -Al-O-Fe- like species as suggested by Hensen et al. [22,23]. To analyse for the presence of any such species ²⁷Al MAS NMR spectra of H-ZSM-5 and Fe-ZSM-5 catalysts are recorded (Fig. 2). The resonance band at 54 and 0 ppm in H-ZSM-5 corresponds to tetrahedrally (framework) and octahedrally (extra-framework) coordinated alumina, respectively [16]. The relative intensities indicate that small amounts of extraframework alumina are already present in starting H-ZSM-5. The intensity of the NMR resonance bands in Fe-ZSM-5 is expected to decrease compared with H-ZSM-5 as shown in Fig. 2. When iron species is present in close proximity to alumina species, for example at ion-exchange positions, the

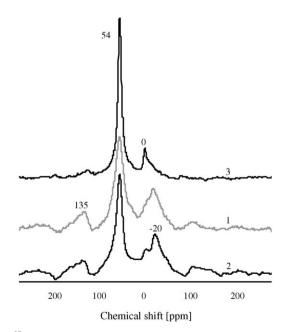


Fig. 2. 27 Al MAS NMR of Fe-ZSM-5-320 (1), Fe-ZSM-5-700 (2), and parent H-ZSM-5 (3).

magnetic field generated by unpaired electrons of iron species will perturb the resonance of Al nuclei leading to a decreased intensity [16]. The high intensity spinning side bands around 135 and -20 ppm, due to dipolar interaction between electron spin of iron species and Al nuclei support that Fe³⁺ is at framework ion-exchange positions. The extra-framework alumina at 0 ppm is clearly evident in Fe-ZSM-5-700. This suggests that iron species are not extensively interacting with extra-framework alumina. In Fe-ZSM-5-320 the extra-framework alumina is not very clear due to the broad spinning side band. Marturano et al. [16] have shown that extra-framework alumina does not strongly interact with iron in Fe-ZSM-5 prepared by 320 °C FeCl₃ sublimation, as observed in our Fe-ZSM-5 NMR spectra. From ²⁷Al MAS NMR it can be concluded that iron species is present at ion-exchange positions or as FeO_r. The presence of extensive FeO_r phases can, however, be ruled out from H₂-TPR (which did not show H₂ consumption around 540 or 800 °C) and XRD prompting us to suggest that most of the active species are present at the ionexchange positions in Fe-ZSM-5 catalysts.

3.1.3. NO adsorption by DRIFT

Different zeolitic and iron species present in Fe-ZSM-5 catalysts are probed by NO adsorption in DRIFT [12,19,24–26]. Fig. 3a and b shows the DRIFT spectra of NO adsorbed Fe-ZSM-5. Fe-ZSM-5 catalysts are either in situ calcined (10 vol% O_2) or reduced (10 vol% H_2) at 450 °C before NO adsorption study. The dynamics of the band evolution is not presented here,

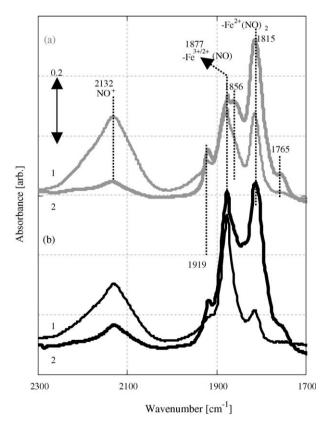


Fig. 3. IR spectra of NO adsorption over (a) Fe-ZSM-5-320 and (b) Fe-ZSM-5-700, oxidised (1) and reduced (2) catalysts.

however, it should be mentioned that all the bands saturated quickly due to high NO (5 vol%) concentration used for the adsorption. IR bands at 1815 and 1919 cm⁻¹ are due to symmetric and assymmertic NO stretches of iron dinitrosyl (Fe²⁺(NO)₂) species, respectively, and the shoulder at 1765 cm⁻¹ is due to the mononitrosyl of the iron dinitrosyl species [25,27]. The iron species present in ZSM-5 straight channels, which are also easily accessible, are proposed as responsible for the band at 1815 cm^{-1} [25–27]. The appereance of 1815 cm^{-1} band in all Fe-ZSM-5 catalyst shows that some iron species are present in 2+ oxidation state, even in oxidised catalyst. Comparison of 1815 cm⁻¹ band relative intensity over oxidised Fe-ZSM-5-320 and Fe-ZSM-5-700 indicates that high temperature sublimation mainly leads to Fe³⁺ species in easily accessible locations in the former catalyst. On He treatment at 450 °C (not shown) 1815 cm⁻¹ band intensity is not influenced significantly and, therefore, autoreduction of Fe³⁺ to Fe²⁺ is very limited in both Fe-ZSM-5 catalysts. In the previous report Fe-ZSM-5-320 catalyst pretreated in He, has shown high intensity 1815 cm⁻¹ band. This has to be related to HC impurities during pretreatment [18]. The intensity of 1815 cm⁻¹ band increases by several folds on H₂ reduction in both Fe-ZSM-5 catalysts. Comparing the relative intensity of 1815 cm⁻¹ band it can be postulated that most of the iron species in Fe-ZSM-5-320 are present in straight channels (iron species that can form dinitrosyls) [27,25,26].

IR band around 1856 cm⁻¹ is only visible on prolonged reduction at 450 °C, and more of such iron species are present in Fe-ZSM-5-320. Different authors correlated this band to different species as discussed by Mul et al. [19]. These iron species are proposed to be present at the intersections of ZSM-5 pore network [18,19,25]. We believe since these species appear after prolonged reduction, their participation in the redox reactions is limited.

IR band at 1877 cm⁻¹ in oxidised Fe-ZSM-5 is assigned to NO stretchings of mononitrosyl iron species (Fe³⁺(NO)) at ionexchange positions. 1877 cm⁻¹ band is often corrrelated to isolated iron species (observed in low iron-exchange Fe-ZSM-5) and to iron species located at sterically hindered zeolitic locations [18,25,27]. During the FeCl₃ sublimation, high temperatures drives the iron species to occupy most stable configuration and locations in a ZSM-5 pore network. The most stable locations in a zeolite are sterically hindered locations (γ sites) and the iron species present here will be stabilised by close co-ordination shell of framework oxygens [28]. Significant amount of isolated Fe³⁺ species are present in both Fe-ZSM-5 catalysts and its concentration is much higher in Fe-ZSM-5-700. The intensity of 1877 cm⁻¹ band only slightly increases on reduction. This suggests that Fe³⁺ or Fe²⁺, at these sterically hindered positions, will only form mononitrosyls and this is in agreement with open literature [27,26].

IR band around 2132 cm⁻¹ is assigned to NO₂⁺ and/or NO⁺ over bridging hydroxyl groups [25,26]. The intensity is in accordance with the ion-exchange percentage of Fe-ZSM-5, in which significant amount of bridging hydroxyl groups are still available for NO⁺ adsorption. On reduced Fe-ZSM-5, the amount of NO⁺ adsorption on Brønsted sites decreases as indicated by decreased intensity at 2132 cm⁻¹. This suggests that NO⁺ is

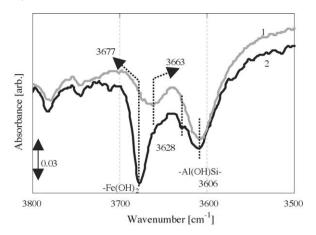


Fig. 4. IR spectra of NO adsorption in hydroxyl stretching region. Fe-ZSM-5-320 (1) and Fe-ZSM-5-700 (2) oxidised catalysts.

originated from Fe³⁺ sites [26]. If NO⁺ is interacting with Brønsted protons, it should lead to the corresponding negative bands and indeed negative bands are observed in hydroxyl stretching region, 3500–3800 cm⁻¹ (Fig. 4). Depending on FeCl₃ sublimation temperature two to three prominent bands are observed in 3500–3800 cm⁻¹ region. The negative band at 3606 cm⁻¹ is a result of NO⁺ adsorption on bridging hydroxyl groups and 3663 cm⁻¹ band can be correlated to NO⁺ adsorption over extra-framework alumina. Chen et al. [4] in their study correlated the negative band around 3663 cm⁻¹ to hydrocarbon interaction with hydroxyls associated with binuclear iron species, [-(OH)Fe-O-Fe(OH)-]²⁺. On Fe-ZSM-5-700, prepared by 700 °C FeCl₃ sublimation, apart from 3666 cm⁻¹ band a new band at 3677 and a shoulder at 3628 cm⁻¹ are observed. IR band at 3677 cm⁻¹ is arising due to NO⁺ adsorbed on the hydroxyl groups of iron species. Such species have been observed by Wood et al. [10] in Fe/Al-ZSM-5, by Mauvezin et al. [21] and Kameoka et al. [29] in Fe-BEA. Duplication of Fe-ZSM-5 catalyst preparation by 320 °C FeCl₃ sublimation never lead to hydroxyl groups associated with iron species with such high intensity. On the other hand such iron species is consistently observed by FeCl₃ sublimation in to H-ZSM-5 above 700 °C.

Keeping in mind the aggressive Fe-ZSM-5-700 catalyst preparation conditions, the iron species, having hydroxyl groups, are either at ion-exchange positions or associated with extra-framework alumina (-Al-O-Fe(OH)_x like species). ²⁷Al MAS NMR (Fig. 2) shows the presence of extra-framework alumina in Fe-ZSM-5-700, and therefore, iron species is not in close proximity to extra-framework alumina. This rules out extensive -Al-O-Fe(OH), like species formation. The hydroxylated iron species, therefore, should be present at zeolite ionexchange positions. Wood et al. [10] have suggested such a species to be -Fe(OH)2, based on intensity ratios between 3673 cm⁻¹ (assymmetric) and 3628 cm⁻¹ (symmetric) stretching vibrations. During NO adsorption study by DRIFT, due to high NO concentration used, the dynamics of the bands at 3677 and 3628 cm⁻¹ could not be followed. The Fe/Al-ZSM-5 catalyst preparation by Wood et al. [10] and in the present investigation (Fe-ZSM-5-700) involve high temperature treatment and it is reasonable to assign 3677 and 3628 cm⁻¹ bands to $-\text{Fe}(\text{OH})_2$. This iron species is suggested as isolated active sites associated with framework alumina. Further experiments have revealed that high temperature sublimation is necessary to create $-\text{Fe}(\text{OH})_2$ and with increase in $\text{Fe}(\text{Cl}_3)$ sublimation temperature the concentration of $-\text{Fe}(\text{OH})_2$ increase [30]. Upon reduction $-\text{Fe}(\text{OH})_2$ bands disappeared due to dehydroxylation, similar observation made by Kameoka et al. [29]. H₂-TPR shows that iron species in Fe-ZSM-5-700 can be reduced at relatively low temperature, and if $-\text{Fe}(\text{OH})_2$ like species are reduced it should lead to -Fe(OH) like species. Further experiments are needed to confirm such iron species.

Comparison of the IR spectra in 1700–4000 cm⁻¹ region shows that Fe-ZSM-5-700 has relatively more isolated iron species that form monomintosyls, whereas Fe-ZSM-5-320 has iron species that form dinitrosyls. From DRIFT and ²⁷Al MAS NMR it can be concluded that isolated –Fe(OH)₂ are present in Fe-ZSM-5-700 and these are associated with framework alumina. The –Fe(OH)₂ seems to form only mononitrosyl complex on NO adsorption (1877 cm⁻¹ IR band). If –Fe(OH)₂ is present in the straight channels of ZSM-5 the relative intensity of 1815 cm⁻¹ band is expected to be much higher than what is observed in reduced Fe-ZSM-5-700. The –Fe(OH)₂ species are only formed on high temperature FeCl₃ sublimation. The catalysts containing such species are also reported to be active for N₂O decomposition and HC oxidation [10,21,29].

3.2. Catalytic activity

Fig. 5a shows SCR of NO_x with NH_3 . The NO_x reduction with NH₃ over various Fe-ZSM-5 catalysts prepared by FeCl₃ sublimed at different temperatures are discussed in an earlier paper [18]. Fe-ZSM-5-320 and Fe-ZSM-5-700 are in general very active and selective in NO_x reduction with NH₃ even under very high space velocities and in the presence of 9 vol% H₂O. Though the ion-exchange percentage in Fe-ZSM-5-700 is less than Fe-ZSM-5-320, the former catalyst is more active in SCR of NO with NH3. The turn-over-frequency (number of NO molecules converted per iron site per second) at 300 °C, over Fe-ZSM-5-700 is 19, a factor of 2 higher than that observed over Fe-ZSM-5-320. Fig. 5b shows SCR of NO with i-C₄H₁₀. Fe-ZSM-5-320 has shown maximum NO_x conversion of around 55% at 350 °C. Over Fe-ZSM-5-700 the maximum NO_x conversion is 50%. This is however observed at 300 °C. The decrease of NO_x conversion above 300 °C is due to direct oxidation of HC to CO_x, which decreases the concentration of the reductant necessary for SCR. Fe-ZSM-5 shows an order of magnitude low activity using HC as a reductant, even in the absence of H₂O compared with NH₃ as a reductant. NO₂ is a more powerful reactant, and NO oxidation to NO₂ over various SCR catalysts is considered as a primary step [26]. NO oxidation to NO₂ over Fe-ZSM-5 catalysts is shown in Fig. 6. Fe-ZSM-5-700 shows very high conversion approaching thermodynamic equilibrium limits around 300 °C. Fe-ZSM-5-320 catalyst has a lower conversion of NO to NO₂ compared with Fe-ZSM-5-700. The NO_x conversion during SCR with NH₃ and *i*-C₄H₁₀ is in agreement with NO conversion to NO₂ trends over the respective catalysts.

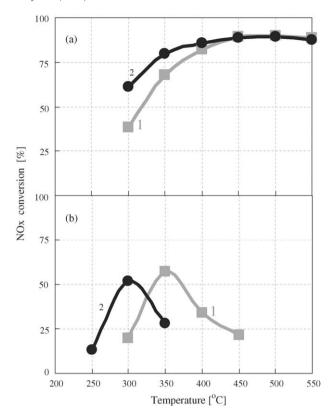


Fig. 5. SCR of NO_x with (a) NH₃ and (b) i-C₄H₁₀ over Fe-ZSM-5-320 (1) and Fe-ZSM-5-700 (2) catalysts. *Reaction conditions*: NO_x = NH₃ = 1000 ppm, O₂ = 10 vol%, H₂O = 9 vol% balance N₂, GHSV = 750,000 h⁻¹ and (b) SCR with i-C₄H₁₀. *Reaction conditions*: NO_x = i-C₄H₁₀ = 1000 ppm, O₂ = 10 vol% balance N₂, GHSV = 50,000 h⁻¹.

The Fe-ZSM-5 catalysts prepared by 320 °C FeCl₃ sublimation and aqueous ion exchange (not shown), consistently show low conversions in various reactions involved in SCR, compared with Fe-ZSM-5 catalyst prepared by 700 °C FeCl₃ sublimation. The low activity observed over Fe-ZSM-5-320 or ion-exchange Fe-ZSM-5 catalysts cannot be correlated to the presence of FeO_x phases. It is shown by XRD and H₂-TPR that FeO_x phases are almost absent in Fe-ZSM-5-320. In

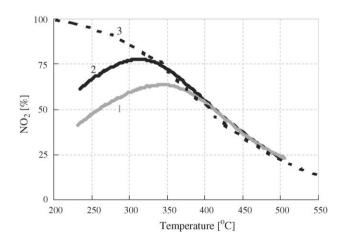


Fig. 6. NO conversion to NO_2 over Fe-ZSM-5-320 (1), Fe-ZSM-5-700 (2), and thermodynamic equilibrium (3). *Reaction conditions*: $NO_x = 1000$ ppm, $O_2 = 10$ vol% balance N_2 , GHSV = 50,000 h⁻¹.

Fe-ZSM-5-320 relatively high concentration of iron species are present in the easily accessible straight channels (iron species that can form $-\text{Fe}^{2+}(\text{NO})_2$) compared with the isolated species (that can form $-\text{Fe}^{3+/2+}(\text{NO})$). Though all iron species are active in various SCR reactions studied, the intrinsic activity of iron species present in easily accessible straight channels seems to be low. High temperature FeCl₃ sublimation leads to high concentration of isolated species in Fe-ZSM-5-700 relative to iron species present in straight channels or compared with Fe-ZSM-5-320. These isolated iron species in Fe-ZSM-5-700 are also found to be associated with hydroxyl groups (-Fe(OH)₂), which are absent in Fe-ZSM-5-320. From ²⁷Al MAS NMR, the extensive interaction of iron species with extra-framework alumina, at present stage, can be ruled out, and the isolated -Fe(OH)₂ species are present at ion-exchange positions of ZSM-5. The improved activity over Fe-ZSM-5-700 has to be related to intrinsically high activity of the isolated iron species (-Fe(OH)₂) at ion-exchange positions.

3.3. Stability of Fe-ZSM-5 catalysts

The catalyst deactivation is one of the major problems in using zeolite-based materials in real exhaust-gas applications. Fe-ZSM-5 is shown to be resistant to dealumination and, therefore, very stable. However, ageing of Fe-ZSM-5 is generally performed below 500 °C and the conversions are generally >80% where the catalyst deactivation is hardly observed [3]. In the present investigation the SCR activity at 600 °C for 100 h TOS is studied over Fe-ZSM-5-320 and Fe-ZSM-5-700 catalysts (Fig. 7a). During the SCR of NO_x with NH₃ at 600 °C, catalysts are subjected to simulated exhaust gases containing 10 vol% H₂O at high space velocities. After every 15 h of TOS at 600 °C, the NO_x conversion at low reaction temperatures is measured (only the activities after selected time intervals are shown in Fig. 7b). The NO_x conversion decreases over both the Fe-ZSM-5 catalysts with increase of TOS at 600 °C (Fig. 7a). The deactivation is rather fast during the initial 25 h TOS followed by a gradual decrease in NO_x conversion. Stable NO_x conversion is not reached over both the Fe-ZSM-5 catalysts during 100 h of TOS. The initial NO_x conversion over both the Fe-ZSM-5 catalysts in the temperature range 450–600 °C is around 80% (Fig. 7b) and the low temperature activity further decreases with increasing ageing time at 600 °C. From Fig. 7 it should be noted that Fe-ZSM-5-700 prepared by high temperature FeCl₃ sublimation is more active and seems to be relatively more stable than that of Fe-ZSM-5-320. This is in agreement with our previous study [18]. Irrespective of Fe-ZSM-5 preparation method, catalysts deactivate under simulated exhaust gases containing H₂O. Lee and Rhee [31] have reported that NO_x reduction with i-C₄H₁₀ also decreases due to ageing under similar conditions.

3.4. Characterisation of aged Fe-ZSM-5 catalysts

The 600 °C aged catalysts are characterised by various techniques and compared with the fresh catalysts. Fig. 8 shows

Fig. 7. SCR of NO_x with NH₃ (a) TOS at 600 °C and (b) NO_x conversion below 600 °C, after maintaining 'T' hours at 600 °C. Fe-ZSM-5-320 (1) and Fe-ZSM-5-700 (2). *Reaction conditions*: NO_x = NH₃ = 1000 ppm, O₂ = H₂O = 9 vol% balance N₂, GHSV = 1,400,000 h⁻¹.

 $\rm H_2$ -TPR profiles of fresh and aged Fe-ZSM-5-700. The iron species that are easily reducible in fresh Fe-ZSM-5-700 are completely lost and the reduction of Fe³⁺ in aged catalysts seems to be more difficult as evident from shift in H₂-TPR profile to >420 °C. $\rm H_2$ consumption above 600 °C is relatively more in aged catalyst indicating the presence of FeO_x phases. The broad $\rm H_2$ consumption peak above 900 °C is due to slow reduction of Fe²⁺ attached to zeolite framework to Fe⁰ or reduction of FeO_x nano-particles [18,21]. The intensity of the

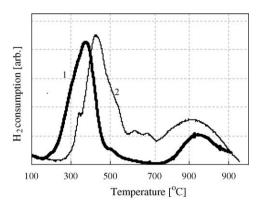


Fig. 8. H₂-TPR profiles of Fe-ZSM-5-700, fresh (1) and aged (2) (>100 h at 600 $^{\circ}\text{C})$ catalyst.

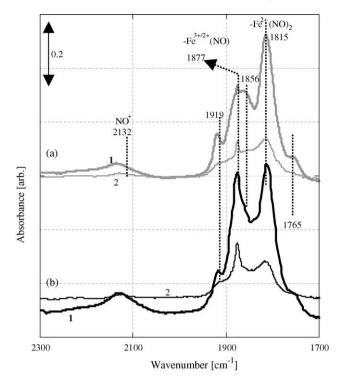


Fig. 9. IR spectra of NO adsorption over reduced (a) Fe-ZSM-5-320 and (b) Fe-ZSM-5-700, fresh (1) and aged (2) (>100 h at 600 °C) catalysts.

high temperature peak increases on ageing and shifts to low temperature indicating increased amount of FeO_x particles in Fe-ZSM-5-700.

Fig. 9 shows DRIFT spectra of NO adsorbed at 50 °C over fresh and aged Fe-ZSM-5 catalysts (before NO adsorption catalysts are reduced in H₂ at 450 °C). Reduction treatment leads to the detection of all possible iron species (as Fe³⁺ ions present in straight channels will not form nitrosyls). The intensity of IR bands arising from nitrosyls of iron attached at the framework ion-exchange positions (1815, 1856, and 1877 cm⁻¹), drastically decreased in both aged Fe-ZSM-5 catalysts compared with the fresh catalysts, respectively. In aged catalysts significant amount of Fe³⁺ can be reduced around 450 °C (Fig. 8), however majority of the Fe²⁺ do not seem to form nitrosyls. Therefore, the decrease in IR band intensity is correlated to the formation of FeO_x particles that only weakly adsorbs NO [26]. The intensity of 1877 cm⁻¹ band (isolated iron species) in aged Fe-ZSM-5-700, compared to aged Fe-ZSM-5-320 and iron species in straight channels (1815 cm⁻¹) of respective catalysts, indicates that the isolated iron species are relatively more stable. From DRIFT it is concluded that in both aged Fe-ZSM-5 catalysts Fe³⁺ is extensively detached from the zeolite framework leading to FeO_x formation. The isolated iron species, in Fe-ZSM-5-700, are relatively more stable and most active species in SCR of NO_x.

Fig. 10 shows NH₃-TPD over fresh and aged Fe-ZSM-5 catalysts. All catalysts show two NH₃ desorption peaks. The peak around 200 $^{\circ}$ C is due to desorption of weakly bound NH₃ followed by desorption around 400 $^{\circ}$ C due to strongly bound

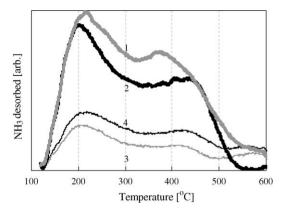


Fig. 10. NH $_3$ -TPD over Fe-ZSM-5-320 (1 and 3) and Fe-ZSM-5-700 (2 and 4). Thick lines—fresh and thin lines—aged (>100 h at 600 °C) catalysts.

 NH_3 . The strongly bound NH_3 is arising from Fe-ZSM-5 unoccupied Brønsted hydroxyl groups (bridging hydroxyls) and strong Lewis iron sites. The significant decrease in NH_3 desorption in the aged catalysts implies that Fe^{3+} is detached from ZSM-5 ion-exchange positions followed by extensive dealumination of zeolite. This is in agreement with H_2 -TPR and DRIFT.

Irrespective of catalyst preparation method, all Fe-ZSM-5 catalysts deactivate when aged at 600 °C for prolonged times. From characterisation it is shown that the catalyst deactivation is due to the detachment of Fe³⁺ form the ion-exchange positions leading to the formation of FeO_x. The detachment of Fe³⁺ further leads to extensive zeolite dealumination. Fe-ZSM-5 catalysts aged at 700 °C have lower rates of deactivation but similar deactivation mechanism is applicable [18,31]. Even at low temperature the deactivation occurs but the rate of deactivation will be much smaller. Fe-ZSM-5 catalysts are very active in SCR of NO_x with NH₃ and HCs, the stability of these materials in the presence of H₂O will be an impeding problem for their real applications.

4. Conclusions

Fe-ZSM-5 catalysts prepared by 700 °C FeCl₃ sublimation are more active in SCR of NO with NH₃, with i-C₄H₁₀, and NO conversion to NO₂ compared with Fe-ZSM-5 prepared by 320 °C FeCl₃ sublimation. The nature and population iron species at different zeolite locations can be influenced by changing FeCl₃ sublimation temperature. High temperature FeCl₃ sublimation results in isolated iron species having hydroxyl groups (-Fe(OH)₂) at framework ion-exchange positions as confirmed by ²⁷Al MAS NMR and NO adsorption by DRIFT. Such isolated iron species are found to be intrinsically more active in various reactions involved in SCR. Irrespective of Fe-ZSM-5 preparation method all catalysts severely deactivate when they are aged in simulated exhaust gases at 600 °C. The deactivation is due to extensive detachment of Fe from the framework followed by dealumination.

Acknowledgements

The authors would like to thank Bart van der Linden for technical support and The Netherlands Technology foundation (STW) for the financial support.

References

- [1] G. Busca, L. Lietti, G. Ramis, F. Berti, Appl. Catal. B 18 (1998) 18.
- [2] Y. Traa, B. Burger, J. Weitkamp, Microporous Mesoporous Mater. 30 (1999) 3.
- [3] H.Y. Chen, W.M.H. Sachtler, Catal. Today 42 (1998) 73.
- [4] H.Y. Chen, T. Voskoboinikov, W.M.H. Sachtler, Catal. Today 54 (1999) 483.
- [5] Q. Sun, Z.X. Gao, H.Y. Chen, W.M.H. Sachtler, J. Catal. 201 (2001) 89.
- [6] R.Q. Long, R.T. Yang, J. Am. Chem. Soc. 121 (1999) 5595.
- [7] A.-Z. Ma, W. Grunert, Chem. Commun. (1991) 71.
- [8] G.D. Pirngruber, M. Luechinger, P.K. Roy, A. Cecchetto, P. Smirniotis, J. Catal. 224 (2004) 429.
- [9] E.J.M. Hensen, Q. Zhu, R.A. van Santen, J. Catal. 220 (2003) 260.
- [10] B.R. Wood, J.A. Reimer, A.T. Bell, M.T. Janicke, K.C. Ott, J. Catal. 225 (2004) 300
- [11] A.A. Battiston, J.H. Bitter, F.A.F. de Groot, A.R. Overweb, O. Stephan, J.A. van Bokhoven, P.J. Kooyman, C. van der Spek, G. Vanko, D.C. Koningsberger, J. Catal. 213 (2003) 251.
- [12] G. Berlier, A. Zecchina, G. Spoto, G. Ricchiardi, S. Bordiga, C. Lamberti, J. Catal. 215 (2003) 264.
- [13] R. Joyner, M. Stockenhuber, J. Phys. Chem. B 103 (1999) 5963.
- [14] P.K. Roy, G.D. Pirngruber, J. Catal. 227 (2004) 164.

- [15] G.I. Panov, A.K. Uriarte, M.A. Rodkin, V.I. Sobolev, Catal. Today 41 (1998) 365.
- [16] P. Marturano, L. Drozdov', A. Kogelbauer, R. Prins, J. Catal. 192 (2000) 236
- [17] M.S. Kumar, M. Schwidder, W. Grünert, A. Brückner, J. Catal. 227 (2004) 384
- [18] K. Krishna, G.B.F. Seijger, C.M. van den Bleek, M. Makkee, G. Mul, H.P.A. Calis, Catal. Lett. 86 (2003) 121.
- [19] G. Mul, J. Perez-Ramirez, F. Kapteijn, J.A. Moulijn, Catal. Lett. 80 (2002) 129.
- [20] G. Mul, M.W. Zandbergen, F. Kapteijn, J.A. Moulijn, J. Parez-Aamirez, Catal. Lett. 93 (2004) 113.
- [21] M. Mauvezin, G. Delahay, B. Coq, S. Kieger, J.C. Jumas, J. Olivier-Fourcade, J. Phys. Chem. B 105 (2001) 928.
- [22] E.J.M. Hensen, Q. Zhua, R.A.J. Janssen, P.C.M.M. Magusin, P.J. Kooy-man, R.A. van Santen, J. Catal. 233 (2005) 123.
- [23] E.J.M. Hensen, Q. Zhu, R.A. van Santen, J. Catal. 220 (2003) 260.
- [24] K.I. Hadjiivanov, Catal. Rev. Sci. Eng. 42 (2000) 71.
- [25] L.J. Jobree, I.-C. Hwang, J.A. Reimer, A.T. Bell, J. Catal. 186 (1999) 242.
- [26] H.Y. Chen, El-M. El-Malki, X. Wang, R.A. van Santen, W.M.H. Sachtler, J. Mol. Catal. 162 (2000) 159.
- [27] K. Segawa, Y. Chen, J.E. Kubsh, W.N. Delgass, J.A. Dumessic, W.K. Hall, J. Catal. 76 (1982) 112.
- [28] Z. Sobalik, J. Dedecek, D. Kaucky, B. Wichterlova, L. Drozdova, R. Prins, J. Catal. 194 (2000) 330.
- [29] S. Kameoka, T. Nobukawa, S. Tanaka, S. Ito, K. Tomishige, K. Kunimori, Phys. Chem. Chem. Phys. 5 (2003) 3328.
- [30] K. Krishna, M. Makkee, Catal. Lett. 106 (2006) 183.
- [31] H. Lee, H. Rhee, Catal. Lett. 61 (1999) 71.